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EXTENSION OF AN ANALYSIS OF PERIPHERAL WALL CONDUCTION 
EFFECTS FOR LAMINAR FORCED CONVECTION IN 

THIN-WALLED RECTANGULAR CHANNELS 
by Joseph M. Savino a n d  Robert Siege1 

Lewis Research Center 

SUMMARY 

In an earlier analysis the influence of peripheral heat conduction was considered for 
the condition in which only the broad walls of rectangular ducts were conducting. The 
heat was generated solely within the broad walls, and the narrow side walls were non- 
conducting as well as unheated. Both the flow and the heat transfer were assumed to  be 
fully developed. 

In this report  the previous work has been extended to include two cases of greater 
generality. The first case was a rectangular duct of arbitrary aspect ratio with uniform 
heat generation and heat conduction within the broad walls as in the previous analysis. 
The extension made here is to allow the short walls t o  also be heat conducting, but with 
the restriction that a junction of infinite thermal resistance exists between the broad and 
short sides s o  that heat flow around the corners cannot occur within the walls. 

mal derivatives at the boundaries expressed in terms of the second partial derivatives 
along the boundary to account for the conduction within the walls. An analytical solution 
was obtained for the temperatures in the fluid and on the boundaries by using a product 
solution in the form of a Fourier se r ies  expansion. The unknown wall  temperatures were 
contained in the integrals required for the Fourier coefficients s o  that the wall tempera- 
tures  were expressed by an integral equation. An analytical solution was found, and re- 
sults were evaluated numerically on a digital computer. 

The temperatures within the duct were governed by a Poisson equation, with the nor- 

The peripheral conduction within the side walls produced the following effects: 
(1) The temperature distribution along the unheated side walls became quite uniform 

for even small  values of wall conductivity. 
(2) For aspect ratios less  than 5, the temperatures of the heated broad walls were 

lowered by a significant amount; for aspect ratios greater than 5, only small  temperature 
decreases occurred on the broad wa l l s  for a very narrow region adjacent to the corner. 

The second case studied was a square duct with uniform heating and peripheral heat 
conduction in all walls. The solutions provided quantitative information on how the wall 
temperatures become more uniform as a function of wall conductivity. For  large wall 
conductivity, the results were in agreement with the uniform peripheral wall tempera- 
ture  solution. 



INTRODUCTION 

In reference 1 an analysis was made of the influence of peripheral wall conduction on 
the temperature distributions around the perimeter of rectangular channels that were 
cooled by fully developed laminar forced convection. The channels were heated along 
part  or the entire width of only the broad sides with the short  sides left unheated. Wall 
heat conduction was assumed to  take place only within the broad sides; the short  sides 
were of insulating material. Solutions were evaluated for aspect ratios f rom 1 to 03 with 
the wall conductivity varying from 0 to  w. In the present report  the analysis of r e fe r -  
ence 1 is extended to  two more general cases in which all the channel walls a r e  heat con- 
ducting. These cases are described as follows. 

Case I: The cases considered in reference 1 were models of typical cooling passages 
employed in flat-plate fuel assemblies of nuclear reactors.  In each assembly a se r i e s  of 
parallel heat generating plates with coolant flowing between them a r e  supported by un- 
heated side plates. In general, all walls including the side plates are heat conducting 
with some heat flowing from the fuel plates around the corners into the side plates. Be- 
cause of the complexity of the most general problem, it was assumed in reference l that 
the side plates were nonconducting. In this report  some cases of greater generality a r e  

\ 
\ 

Poor 
thermal 
jo int  

- Region of uniform heating 

Peripheral conduction i n  both 
broad and short sides 

(a) Rectangular channel heated only on broad sides, with peripheral 
conduction i n  all sides and no heat flow around corner wi th in the 
walls. 

\L Peripheral conduction 
i n  all sides 

(b) Square channel wi th uni form heating 
and peripheral conduction i n  a l l  sides. 

Figure 1. - Models of channels analyzed. 

treated that include the side wall conduc- 
tion. An attempt was made to  account for 
the heat flow around the corner within the 
walls, but the resul ts  for that problem 
were unsatisfactory because of poor con- 
vergence of the Fourier se r ies  represent- 
ing the wall temperature derivatives at the 
corners. In the present analysis, there- 
fore, it was assumed that no heat flow oc- 
curred around the corners within the walls. 
This assumption eliminated some t e rms  
from the more general solution, and the 
convergence in this case was quite good. 
The situation with no heat flow around the 
corner represents a limiting case some- 
t imes encountered in practice where a 
poor joint exists between the fuel plates 
and the side support plates, thus providing 
a high thermal resistance at the corners. 
Figure l(a) illustrates this case. The 
heat generation, which is either supplied 
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Figure 2 - Coordinate system for model of rectangular thin- 
wall channel employed i n  analysis. 

to or generated within the walls, is taken to  be 
uniformly supplied over the broad sides. The 
solution was  obtained and the temperature distri- 
butions were evaluated for aspect ratios of 1, 2, 
5, and 10 for values of the wall conductivity pa- 
rameter that ranged from 0 to high values. 

effect of peripheral wall conduction on the tem- 
perature distribution in a square duct where all 
four walls conduct heat and are uniformly heated. 
This geometry is one that is sometimes con- 

Case II: The second case considered the 

sidered for honeycomb type fuel assemblies in advanced nuclear propulsion devices. The 
duct configuration is shown in figure l(b). Temperature distributions were obtained for 
several wall conductivities between 0 and a high value. 

For both cases the fluid motion and the convective heat transfer a r e  assumed to be 
laminar and fully developed with constant fluid properties. The same type of analytical 
approach as that in reference 1 is used. An additional part is incorporated into the so- 
lution to  account for heat being conducted within the two short walls assumed to  be insu- 
lated in the earlier paper. The additional part leads to a coupling of the temperature 
distributions for adjacent sides and a simultaneous solution is required. 

A similar analysis for turbulent convective heat transfer is not possible because the 
present state of knowledge of the turbulent mechanism is incomplete, especially for rec- 
tangular ducts. The analysis for laminar convection is of value because there are some 
conditions under which the laminar convection does occur, during reactor shutdown for 
example. Secondly, the solution for laminar convection will demonstrate in a qualitative 
way the influence of peripheral conduction on the wall temperatures. The laminar solu- 
tions would be expected to provide larger variations of wall temperature around the duct 
perimeter as compared with the turbulent case. 

ANALYSl S 

A coordinate system for rectangular (including square) ducts is defined as shown in 
figure 2. The momentum equation governing the velocity distribution under the condi- 
tions of laminar fully developed flow is given by 
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(Symbols a r e  defined in appendix A. ) When heat is being transferred to  the fluid, the 
temperatures throughout the fluid are determined by the energy equation which, under the 
assumed fully developed heat-transfer condition, takes the form 

where viscous dissipation is assumed negligible. Since the fluid properties p ,  cp, kf, 
and p are  considered to be constant throughout the flow field, the momentum equation (1) 
and the energy equation (2) are not coupled, and the velocity profile can be determined 
from equation (1) directly. This has been done and the profile available in Knudsen and 
Katz (ref. 2, p. 101) is (after rearrangement into a more convenient form) 

n+l -nny(l-Y) -"nY(l+Y) 
1 - x  2 +- 32 (-I.?(, + e  ) cos - nrX 

2 1 + e-"V 3 
71 

u -  n=l,  3, 5.. . -- - ~ 

U 
2 128 1 1 - e-"" 
- - -  3 y71 5 n=l,  2 3,  5.. . .(l+e-nV) 

(3) 

The energy equation can be simplified by making a heat balance for a volume extending 
over the entire channel cross section and having an incremental length dz. This heat 
balance results in the following relation: 

aTb 4abpc Ti - = Q 
P az 

where Q is the total heat input per unit channel length and is a constant for all the 
cases considered here. For fully developed conditions the temperature profiles have the 
same shape for all z so that 

Hence, 
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2 az 

Substituting these relations into the energy equation (2) simplifies it t o  

o r  

where 

Equation (4), Poisson's equation, is to be solved using the velocity profile given by equa- 
tion (3) and is subject to the particular boundary conditions of interest in this analysis. 

I 

xL- 
' Y  

Y - b  

Figure 3. -Terms for heat balances at boundaries with peripheral conduction in walls (for unit 
axial length of duct). 
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Case I - Rectangular ducts with uniform internal heating throughout the broad walls 
only, and with peripheral heat conduction in all walls (no heat conduction around the cor- 
ner within the walls). - The boundary conditions for this class of problems are derived 
by performing heat balances on elements of the heated and unheated walls. The t e r m s  
entering into the heat balances are shown in figure 3 (p. 5). Note that only one quadrant 
of the duct cross section need be considered because of the symmetry that exists about 
the coordinate axes. The wall thickness w is considered to be sufficiently thin so that 
the temperature is constant through the wall thickness and is equal to the local fluid 
temperature at the wall. The local internal heat generation per unit area q will be 
held constant along the width of the heated wall, although the analytical technique used 
here can be applied for any prescribed variation of q with y. The total heat input per 
unit channel length in the flow direction Q is related to q by the equation Q = 4bq 
Under these restrictions the thermal boundary conditions for the duct quadrant are as 
follows: 

g 

g 
g ' g 

ae - 1 % a2e 
ax b kf ay2 

x = a ,  O < y < b  +W-- - -  

ae - conditions 

a Y  
O < x < a , y = O  - -  - -  

The second derivative t e r m s  in (5a) and (5b) account for the peripheral conduction 
within the walls. When the wall conductivity % is 0, the problem reduces to one of 
uniform heat flux transferred to  the fluid f rom the broad walls of rectangular channels 
with the short walls nonconducting, a set of conditions that has been treated in refer-  
ences 3 and 4. 

One other condition must be specified to  complete the mathematical description of 
the problem. The condition is imposed that no heat be conducted around the corner within 
the walls at x = a, y = b, and this is expressed by equating the derivatives along each 
wall to  0 at the corner. Within the short  wall, y = b, this condition gives 
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-- a e - ~  at x = a  
ax 

In the broad wall, x = a, the condition is 

An analytical solution will now be obtained for the energy equation (4) subject to boundary 
conditions (5) and (6). 

reference 5 (p. 9), i f  fo r  a given geometry a solution of Poisson's equation is known for 
simple boundary conditions, then more complicated boundary conditions can be accounted 
for by superposing solutions of Laplace's equation. For the present problem the unknown 
dimensionless temperature 8 is replaced by a sum of a Poisson solution and two Laplace 
solutions: 

The solution is derived by applying the method of superposition. As discussed in 

e = e  PI + e L 1 + e L 2  

Equation (7) is substituted into the energy equation (4) and the boundary conditions (5) 
and (6). The resulting relations a r e  divided as follows into three distinct partial differ- 
ential equations and their boundary conditions: 

v 2 epI=-- 1 4x7 Y) 
ab U 

aePI - O < x < a ,  y = O , b  -- 

= o  PI x = O , O < y < b  - 
ax - -  

aePI - 1 
ax b 

x = a ,  O < y < b  - -- - -  

2 v e L 1 = o  
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aeLl  - O < x < a , y = O  - -  -- 
a Y  

O < x < a , y = b  -- a e L l  - w-- kw a2e 
a Y  kf ax2 

- _  

a e L l  - x = O , a ,  O < y < b  -- - -  ax 

aeL2 - O < x < a ,  y = O , b  -- 
a Y  

- -  

aeL2 - x = O , O < y < b  -- 
ax - -  

a e ~ 2  - W-- 'tr a2e 
kf ay2 

x = a , O < y < b  - -  -- 
ax 

Poisson's equation (8a) and boundary conditions (8b), (8c), and (8d) account for the 
total heat addition to  the channel. This is necessary because a solution to a Laplace 
problem cannot add or subtract any net amount of heat to or from a closed region. The 
solution for OL1 adjusts the fluid temperature distribution to  account for a redistribu- 
tion of heat along the short side wall due t o  the presence of conduction within the wall. 
The O L 2  solution accounts for the conduction along the width of the broad wall. Thus, 
the original problem has been divided into a forced convection problem with simple 
boundary conditions and two problems of steady-state conduction. 

2 sults a r e  summarized in appendix B. Both v OL1= 0 and V2eL2 = 0 can be satisfied 
by product solutions of the same general form: 

The solution for OPI is derived in reference 4, and for convenience the final re- 

- 
Bn cos (,.-) cosh r?) 

. ,  . .  
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and 

ax 

00 

OL2 = - A j  c o s ( . )  c a s h ( . )  

j=1,2,3. . 

where equations (11) and (12) each satisfy their zero normal derivative boundary condi- 
tions (9b), (9d), (lob), and ( 1 0 ~ ) .  To satisfy the remaining boundary conditions, (9c) 
and (lOd), equations (11) and (12) are each differentiated once (eq. (11) with respect to y 
and eq. (12) with respect to x), substituted into their respective boundary conditions 
(9c) and (lOd), and then expanded in a Fourier series to give 

and 

When each integral on the right side of equations (13) and (14) is integrated twice by 
parts, and conditions (sa) and (6b) applied in the process, the Fourier coefficients A 
and Bn are expressed as 

j 

- e $)(:r 4" e(x, b ) c o s ( . ) d x  
- 
B =  n 

and 

- - (-$)(ff ib e(a, y ) c o s ( - ) d y  

A. = 

(15) 

(16) 
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The coefficients in equations (15) and (16) are then substituted into equations (11) and 
(12), and the resulting expressions a r e  placed in dimensionless form. The hyperbolic 
functions a r e  converted to exponential form for greater convenience in numerical evalu- 
ation, and OL1 and QL2 become 

- &( 1-X) - &( 1+X) 
+ e  Y 

2j7r 8L2 = 5' - cos(j7rY)le y -- 1 I - e  Y 

[il e(1, Y)cos(j7rY)dY 3 (18) 

The solution for  8 is obtained by combining equations (17) and (18) with equation (7): 

If equation (19) is evaluated at X = 1 with Y variable and at Y = 1 with X variable, 
the result  is two simultaneous integral equations for the unknown temperature distribu- 
tion 8( l ,Y) along the heated wall and the temperature distribution 8(X, 1) along the un- 
heated wall: 
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00 

1 - e  
j=1,2,3. - - 

co 
-E( I -X)  -E( l+X)  

- 1 (-I)'[ ' i i  -- ][il 8(1,Y)cos(jrY)dY 1 (21) 

1 - e  
j=1, 2 ,3 . .  - 

These integral equations can be solved by a method given in reference 6. 4' e(X, l)cos(nrX)dX and The integrals e(1, Y)cos(jrY)dY are constants for  
4-l 

each value of the summation indices n and j .  These can then be defined as 

D. = 4' 6(l,  Y)cos(jrY)dY 
1 

These constants are unknown as they contain the unknown wall temperatures e(X, 1) and 
Q( l ,  Y). Equation (20) is now multiplied by cos(mrY)dY and integrated from Y = 0 
to  1: 
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4' e(1, Y)cos(m.riY)dY = OpI(l, Y)cos(maY)dY d1 
2n.riK(- l)n Cn 

n=l, 2,3. - - 

-e('+. -- .:-).. 2ma 

Y -- 
1 - e  

- n v (  1-Y) + ,-nny( 1+Y) 
cos( maY)dY 1 e 

1 - e - 2 n v  

In the evaluation of the last te rm on the right the following identity was employed: 

when j = m 4' cos(jnY)cos(m.riY)dY = - 1 
2 

= o  when j # m 

The term on the left side of equation (24) is equal to Dm. The first t e r m  on the 
right side is defined as 

P l  

Em = /o QpI(l, Y)cos(mliY)dY 

The integral in the second te rm on the right is carried out, and equation (24) can then be 
written as 

Equation (26) is solved for Dm and the result written in the form 
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C D m =  e m + 2 fmn n 
n=l,  2 ,3-  - 

where 

- - e, -- 

1 +  

Em 

+ - 
2mlr 

e Y  -7 e 

-- 

In a similar fashion when equation (21) is multiplied by cos(Q-irX) and integrated the fol- 
lowing relation is obtained: 

j=1,2,3.. . 

where 

FQ = 4' epI(x, l)cos(Q.irX)dX 
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- 2K( - 1) '( - 1 ) j  hPj = (33) 

Equations (27) and (30) a r e  the sought after simultaneous relations for the unknown inte- 
grals  Cl and Dm that a r e  contained in the solution for  '(X, Y) (eq. (19)). If equa- 
tions (27) and (30) a r e  combined, a single expression is obtained for either the Cpts  o r  
Dm's: 

2 (fmnhnQ)DQ 
n=l ,  2,3.  - - l=l, 2,3. - . m 

n=l ,  2,3.  - 
(34) 

o r  

Each of these relations is an infinite set  of simultaneous equations for either the Dm or  

Cl. A truncated set  of these equations was solved on a digital computer by the technique 
given by Kantorovich and Krylov (ref. 5, p. 20). Generally about 100 Dm and Cp 
were required to  have the ser ies  solution for 8 converge. The Dm and Cp decreased 
at least as well as l/m3 and l/Q3. The quantities Em and Fp that appear in the co- 
efficients em and gp were evaluated from the BPI solution and their analytical forms 
a r e  given in appendix C. The solution for 8 is now complete; however, to be usable in 
physical problems it must be given relative to the fluid bulk temperature. The dimen- 
sionless bulk temperature O b  is defined as 

+ 4" ab QL1 dx dy + - la ab; 'L2 dx 'PI, b + 'L1, b + 'L2, b ab ab  
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is known from reference 4 and is given in appendix B. Rather than evaluate The 'P1,b 
'Ll, b and 'L2,b 
applying Green's second identity. The procedure will be shown for only the function 

'Ll, b 
integral is eliminated by use of equation (8a), which gives 

by direct integration, a much more simple approach is obtained by 

as the result  for QL2,b  is found in a similar fashion. The u/ii in the OL1, b 

ax 

The second form of Green's identity relates the volume and surface integrals for a 
volume. For the present problem, the velocity and temperature profiles are fully de- 
veloped and we can choose as a volume a unit length of the duct. Green's identity then 
provides the following relation composed of a boundary integral (not a line o r  contour 
integral) and an a rea  integral over the cross  section: 

X=l  

where a /av  denotes the normal derivative, ds  the elemental length on the boundary, 
and r the boundary. Because V QL1 = 0 (eq. (sa)), the second integral vanishes. The 
first integral contains normal derivatives of QL1 and BPI on the region boundaries and 

2 

these a r e  0 except at the channel walls. Hence equation (38) takes the form 

From equation (8d) aePI/aX are evaluated 

f rom equation (17). These quantities a r e  substituted into equation (39) and integrated to 

= 1/y, and the eL1 and ae,,/ay 
IX=l IY=l 

give the final result: 

Similarly, 
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.% (jn)2DjEj 
Y 

' L2 ,b=  
j=1, 2, 3. - 

In summary, the final solution for the dimensionless temperature distribution 
throughout the fluid cross  section is given by 

where (epI - BPI, b) is given in appendix B, BL1 by equation (17), B L 2  by equation (18), 
by equation (41), and the integrals Dm and C. in the 'L1, b by equation (40), eL2, b 

Fourier coefficients a r e  found from equations (34) and (35). 
Case I1 - Square duct with uniform internal heating and peripheral heat conduction 

J 

throughout all the walls. - The analysis for this case will be presented in l e s s  detail than 
that for case I as the basic method is the same. If the dimension 2a is used for the 
length of the duct side, the relation between the heat generation per unit wall a r e a  and 
the total heat input per unit channel length is 

g Q = 8aq 

The boundary conditions analogous to those in equation (5) then become 

kw a2e 
kf ay2 

+w-- a e -  1 
ax 2a 

x = a ,  O < y < a  _ -  

kw a2e +w-- a e -  1 O < x < a ,  y = a  
a~ 2a kf ax2 

- -  

ae - 
ax 

x = O , O < y < a  - -  - -  

ae - O < x < a , y = O  - -  - -  
a Y  

(434  

(43 4 

From the symmetry of the problem there  is no heat flow within the walls around the 
corner; hence, the derivatives at the corner remain 0 as in equations (6). 
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The solution is again formed by a superposition of three solutions as in equation (7). 
The epII (the use of 11 in the subscript distinguishes this solution from BPI in case I) 
solution must now account for  heat addition along all sides of the duct so that the condi- 
tions in equations (8) now become 

aePII - 1 x = a ,  O < y < a  - _  
ax 2a 

aePII - 1 O < x < a ,  y = a  _ _  ay 2a 

aePII - x = O , O < v < a  -- 

aePII - O < x < a , y = O  -- - _  
a Y  

(44 c) 

(444 

The conditions for  QL1 and O L 2  remain the same as in equations (9) and (10) except 
that the dimension b becomes a for the square configuration. 

latter value corresponding to the condition of uniform heating all around the duct 
boundary. 

letting y = 1: 

The solution for  epII is found from appendix B by letting y = 1 and p = 1, the 

The solutions fo r  eL1 and eL2 can be obtained from equations (17) and (18) by 

eL2 = - 2jrK cos(j7iY) 

j=1, 2,3.  - 
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Since for a square duct these expressions a r e  symmetric in X and Y, 

4' O(X, l)cos(n.rrX)dX = O(l,Y)cos(nrY)dY 5 Sn d1 (47) 

When the Sn a r e  found, then OL1 and O L 2  will be known and can be added to  OpII t o  
provide the temperature distribution. The Sn are obtained in the same manner as the 
Cn and D. in case I. However, since the Cn and D. would be equal for the present 
symmetric conditions, equations (27) and (30) simplify to  

J J 

s m = p m +  2 VmnSn 
n=l ,  2,3. - 

where 

and 

-2K(- llm(- 1)" 

P m = 4' ep,(x, l)cos(mrX)dX = OPII(l,Y)cos(mnY)dY 

Analytical expressions for Pm a r e  given in appendix C. Equation (48) is an infinite set 
of simultaneous equations for Sm and was solved as in case I by the methods given in 
reference 5. Generally about 200 Sm were required t o  obtain accurate wall tempera- 
tur e distributions. 

To  be applicable physically the solution has to  be related to the bulk temperature 
in appendix B by Ob. For the OpII function the bulk temperature is found from 8 

letting y = 1 and /3 = 1. The values OL1, b and BL2,  by which a r e  equal to  each other, 
a r e  found by following the same procedure leading t o  equation (40). The only change is 

p, b 
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that aePu/3X I 
tation changes as Cn and Fn are replaced by Sn and Pn, respectively. This yields 

is now 1/2 rather than l/y as used for equation (40) and the no- 
x= 1 

In summary, the temperature distribution is given by 

e - 'b = (ePII - 'PII, b) + e  ( L1 - 'L1, b) + e  ( L2 - 'L2, b) (53) 

The Poisson solutions Bpn  and OpII, b a r e  found from appendix B by letting y = 1 and 
p = 1. The Laplace solutions BL1 and B L 2  a r e  given in equations (45) and (46) where 
the integrals equal to  S, are found from the solution of the simultaneous equations (48). 
The bulk temperatures BL1, and OL2, b are obtained from equation (52). 

RESULTS AND DISCUSSION 

Case I 

The preceding analysis was used to evaluate the dimensionless temperature distri- 
butions (1) throughout the fluid cross section for a square duct (figs. 4(a) and (b)) and 
(2) along the walls for ducts of various aspect ratios (figs. 5(a) to  (d)). The isotherms 
of figures 4(a) and (b) were drawn through temperatures that were calculated from equa- 
tion (B2) with y = l and p = 0 for figure 4(a) and from equation (42) for figure 4(b). In 
figures 5(a) t o  (d), for  the dimensionless wall temperatures, the origin of the abscissa 
corresponds to  the center of the heated sides. As the curves are followed to  the right, 
the temperature distributions proceed along the heated sides to the corners (from Y = 0 
to  Y = 1) and then along the unheated sides from the corners to the center of the un- 
heated sides (from X = 1 to  X = 0). The dimensionless temperatures are governed by 
two parameters  - the channel aspect ratio y and the parameter K, which is referred to 
hereafter as the wall to  fluid conductivity parameter. Each part of figure 5 is for a dif- 
ferent aspect ratio, y = 1, 2, 5, and 10. The solutions from the present analysis a r e  
given by solid lines, and for each solid curve the corresponding solution of reference 1, 
where only the heated walls are heat conducting, is given by the dotted lines. The dot- 
dash lines provide the limiting case when the walls a r e  all nonconducting. 
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X - xla 

1.01 I I l > I  I I I I , , I I -  

. 3  . 4  . 5  .6 
Y = ylb 

.7 . 8  . 9  1.0 

(a) All walls non-heat-conducting, K = 0. 

Figure 4. - Isotherms and approximate heat flow directions within fluid for a square duct uniformly heated in two 
opposite sides only. 

An examination and comparison of the isotherms of figure 4, and of the dotted and 
solid sets of curves in figure 5, clearly reveal the influence of having the unheated walls 
become heat conducting. Two effects are evident. 
unheated walls become much more uniform. Secondly, there is a reduction in the tem- 
peratures of the heated walls. This reduction is appreciable in channels of small  aspect 
ratio (y = 1 and 2) and becomes smaller when y is increased to  5 or 10. To under- 
stand this behavior consider that in a square or rectangular duct the convection is poor 
in the corners because of the low fluid velocities. When only the heated walls are made 
conducting some of the heat generated near the corner will be conducted peripherally 
within the walls away from the corners t o  a region of better convection. This  peripheral 

First, the temperatures along the 
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X = xla 

Y = ylb 

(b) All walls heat conducting, K = 5, with no  heat flow around the  corners wi th in the walls. 

Figure 4. - Concluded. 

wall conduction thereby reduces the corner temperatures. Once the heat is redistributed 
over the conducting walls, it must all be transferred directly from these walls to the 
fluid. 
(K = 0), is typical of all square ducts with heating and conduction in opposite walls only. 
This is because conduction in only the two heated walls does not appreciably change the 
wall temperature distributions as evidenced by the dotted curves in figure 5(a). 

When the unheated side walls are also allowed to be heat conducting, these walls 
provide an  additional path for  the heat to flow from the heated walls into the fluid. 
is seen by examining the patterns of the isothermal lines within the fluid and the resultant 
heat flow directions for  the case when y = 1 and K = 5, as shown in figure 4(b). 

This is indicated in figure 4(a) which, although it is for nonconducting walls 

This 
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(b) Aspect ratio, y - 2. 

Figure 5. - Wall temperatures wi th peripheral conduction in (1) no walls, (2) heated walls only, or (3) al l  walls wi th no heat 
flow around corners. 

of the heat generated in the heated walls now flows through the fluid in the corner regions 
to  a portion of the unheated walls adjacent to the corners. This heat is then conducted 
along the unheated walls and is transferred to  the fluid in a region of improved convec- 
tion. Hence, the unheated walls now become somewhat effective as heat - transfer s u r  - 
faces, and the temperatures along the heated walls a r e  thereby reduced. 

One other feature of figure 4(b) is worth noting because it will aid the understanding 
of the wall temperature curves in figure 5. The heat transfer across  the corners causes 
the isotherms to curve rapidly and group together in the corners.  This produces very 
rapid temperature changes along the walls near the corners  and obscures the fact in 
some cases that the derivatives along the walls are 0 at the corners  as imposed on the 
analysis by equations (6). 
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(d)  Aspect ratio, y = 10. 

A s  the aspect ratio is increased, the fact that the short  wall occupies less  of the 
total channel perimeter makes the conduction in the short wall proportionately less  ef- 
fective in lowering the temperatures on the heated wall. For an aspect ratio of 10 the 
conduction in the short unheated walls produces only a small  reduction in the tempera- 
tu res  of the heated walls close to the corner. 

increases,  the temperatures along all walls become more uniform, but have a higher 
value on the heated walls than on the unheated walls. It is this temperature difference 
that provides the driving potential for the heat flow from the heated walls, across  the 

The effect of increasing the parameter K is also demonstrated in figure 5. A s  K 
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X - xla or Y = yla 

Figure 6. -Wall temperatures of square duct with uniform 
heating and peripheral conduction in all walls. 

fluid in the corner regions to  the unheated 
walls. T o  obtain an indication of the mag- 
nitudes of the K parameter for some 
physical conditions, a channel is consid- 
ered where the thickness of the walls is 
equal t o  1/20 the spacing between the 
broad heated walls, w/2a = 1/20. For 
aluminum walls with water as a coolant, 
K is approximately 30. If the wall ma- 
terial is changed to stainless steel. K is 
reduced to about 3. If the channel is 
stainless steel and the coolant is a liquid 
metal, K becomes less than 1. 

Case I1 

The wall temperatures presented here 
are for a square duct that has uniform 
heating and peripheral conduction in all 
walls. Because of symmetry the tempera- 
tu re  distributions a r e  the same for all 
sides; hence, only the distributions ex- 
tending from the center of one side to  the 
corner need be given. Results are shown 

in figure 6 for K from 0 to  75. For  a small K of unity there is a substantial reduction 
in the peak temperature and the temperature gradients along the wall. 
o r  greater the temperatures have become uniform and should correspond to the limiting 
case of a duct having a uniform peripheral temperature with uniform heat addition in the 
axial direction. A s  given in reference 3, the Nusselt number for  this boundary condition 
in a square duct is 3.60. When the definitions 

For a K of 25 

h2a NU = - 
kf 

and 

24 



are used, there is obtained 

Q/4kf Nu 3.60 

The value 0. 278 is in agreement with the limit for large K in figure 6 and also serves  
as a check on the correctness of the solutions. 

CONCLUSIONS > 5-53 7 
A previous analysis on the effect of peripheral wall heat conduction on the convective 

heat transfer in rectangular ducts has been extended to study two situations of greater 
generality and complexity. The peripheral heat conduction within each wall was formu- 
lated in t e rms  of an integral equation which was coupled with the energy equation in  the 
fluid. The solutions were obtained in analytical form and evaluated for various aspect 
ratios and wall conductivities. 

duction in  the broad walls. When the short unheated walls were allowed t o  conduct heat 
but no heat was allowed to  flow around the corners within the walls, the following changes 
were found as compared with a duct with nonconducting short walls: 

1. For  moderate values of the wall conductivity the temperature distribution along 
the unheated wall became almost uniform. 

2. For  duct aspect ratios less  than 5 the conduction in the unheated wall lowered the 
dimensionless temperatures along the heated wall. The decrease in the difference be- 
tween dimensionless wall and bulk temperatures was from 15 to 30 percent depending on 
the conductivity and aspect ratio. For larger aspect ratios the temperatures along the 
heated wall were decreased only a small  amount for a region near the corner. 

Case 11: A square duct was considered, heat conducting and uniformly heated on all 
walls. Moderate values of wall conductivity were found to  produce substantial reductions 
in the peak temperatures that occurred at the duct corners. For high values of the wall 
conductivity, the duct approached the known case of constant peripheral wall temperature 
with uniform heat addition in the flow direction. 

Lewis Research Center, 

Case I: A rectangular duct was considered with uniform heating and peripheral con- 

d- 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 24, 1965. 
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APPENDIX A 

SYMBOLS 

A 
- 
A j  

An 

a 

Bn 

Bn 
- 

b 

'n 

P 
C 

Dj 

Em 

em 

Fl 

fmn 

g1 

G 

h 

hQ 
K 
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cross-sectional a r ea  

Fourier coefficients defined by 

eq. (16) 

eq. 037) 

Fourier coefficients defined by 

half-length of short  side of rec-  
tangular duct or half-length of 
side of square duct 

Fourier coefficients defined by 
eq. (B9) 

eq. (15) 

Fourier coefficients defined by 

half-length of broad side of rec-  
tangular duct 

integral defined by eq. (22) 

specific heat of fluid at constant 
pres sur  e 

integral defined by eq. (23) 

integral defined by eq. (25) 

coefficient defined by eq. (28) 

integral defined by eq. (32) 

coefficient defined by eq. (29) 

coefficient defined by eq, (B4) 

coefficient defined by eq. (31) 

heat-transfer coefficient 

coefficient defined by eq. (33) 

wall -to- f luid conduct ion par ame - 
ter, wkd% 

k 

Nu 

'm 
P 

Pm 
Q 

qB 

qg 

9s 

'n 
S 

T 

U 

U 
- 

'rnn 
W 

X 

X 

Y 

Y 

thermal conductivity 

Nusselt number 

integral defined by eq. (51) 

static pressure 

coefficient defined by eq. (49) 

total heat-transfer rate t o  fluid 
per unit channel length 

heat flux through broacQwalls 

heat generation rate in wall per 
. i r  

unit wall a rea  

heat flux through short  walls 

integral defined by eq. (47) 

element of surface area around 
duct perimeter per unit duct 
length 

temperature 

local fluid velocity 

integrated mean fluid velocity 

coefficient defined by eq. (50) 

thickness of channel wall 

dimensionless coordinate, x/a 

coordinate measured from center 
of duct in direction parallel to 
short  sides 

dimensionless coordinate, y/b 

coordinate measured from center 
of duct in direction parallel to 
broad sides 



z coordinate measured along 
channel length 

P ratio of heat fluxes, qs/qB 

Y channel aspect ratio, b/a 

e dimensionless temperature, 

4kfT/Q 

I-1 absolute fluid viscosity 

P fluid density 

Subs cr  ipts : 
b integrated bulk mean value 

f fluid 

L Laplace solution 

P Poisson solution 

W wall 
I case I 

I1 case I1 

1 , 2  distinguishes the two different 
Laplace solutions 
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APPENDIX B 

SOLUTIONFOR BPI AND epII 

The solution for Poisson's equation O P  - BP, given in reference 4 is for rectangu- 
lar ducts that a r e  being uniformly heated on each of the four walls, h t  where the heat 
flux qs on the short sides is an arbi t rary fraction p, between 0 and 1, of the flux qB 
on the broad walls. That is, 

When p = 0, all the heating is transferred from only the broad walls, and the QpI - BPI, b 
solution needed for case I results. When p = 1, the heat flux is a constant all around 
the duct periphery. If in addition to p = 1 the aspect ratio is set equal to  1, the 

solution for case II is found. 'PII - 'PII, b 
The general Poisson solution is 

where each of the 0 t e rms  on the right side is given as follows: 

{X4 y2Y2 8 7 (- '1 2 [,ash(. Y) 

n5 cos h (3) 
e,(x,Y) = G - - -- - 

96 16 71 5 

I 

2 

where 

r 03 1-1 
G=[-$+. 16 1 - t a n h ( - ) ]  1 5 

m 
m=l ,  3,  5 . .  . 

e*(x ,Y)  = ( X 2 - y Y )  2 2  
2(Y + P )  
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. 

tanh 2 n2 

nn (yr + n2 

m - 

1 

m n c G Gy G2y3 131G 2 y + G  
e p , b  = L (- + -J+ - + - 

Y + P  40 576 40,320 4n3 8 

n=l, 2,3.. m=l ,  3, 5. . .  

1 

m8 c o s h 2 ( y )  

+$ IT 1 
m=1,3, 5.. 

m c 
n=l, 2,3. .. 

m .rr- xFI IT c 
m = l , 3 , 5 - . -  j=1,2,3... 

(-1)jB. 
J 
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F g  = G 

APPENDIX C 

EXPRESSIONS FOR E,, F1, AND P, 

j=1, 2, 3. . - 

( - ~ ) ( ( Q T ) ~  - 61 -- 4(-1)' 
6 2 4 ( ~ r r ) ~  lr 

1 
p=l, z 3, 5. 

1 

. .  m- 
co 

r= 

( - l ) r A  c 
1 , 2 , 3 -  - - 

The coefficient Pm is given by either of the following two forms resulting from the two 
integrals in equation (51). Although they both give the same numerical results, two dif- 
ferent algebraic expressions are found because OPn has not been used in a symmetric 
form: 

or 
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(-l)m[(ma)2 - 61 4(-1)" 1 
6 2 4 ( m a 

p=l,  3, 5. - - 

P m = G  

The Fourier coefficients Am, (Am) 

and (B9) and G is given by equation (B4). 

, B., and (B.) a r e  given by equations (B7) 
y = l  J J y=l 
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